Emission and Transport of Air Pollutants

Project1

Methods of emission control - Dedusting in Cyclone

Dust cyclone

The operation theory is based on a vortex motion where the centrifugal force is acting on each particle and therefore causes the particle to move away from the cyclone axis towards the inner cyclone wall. However, the movement in the radial direction is the result of two opposing forces where the centrifugal force acts to move the particle to the wall, while the drag force of the air acts to carry the particles into the axis. As the centrifugal force is predominant, a separation takes place.

Dust cyclone

The gas stream enters the cyclone tangentially and creates a weak vortex of spinning gas in the cyclone body.

Large-diameter particles move toward the cyclone body wall and then settle into the hopper of the cyclone.

Dust cyclone

Cyclone battrery

1 - tubular cyclone body
2 - inlet system
3 - outlet system
4 - hopper
5 - support construction

Project 1 - Cyclone

Design a cyclone to ash removal from exhaust gas. The exhaust gas is product of combustion of kg/s fine coal. The coal composition is presented in table 1.
Excess air ratio is $\lambda=\ldots .$. . Ash density
is $\rho_{a}=1300 \mathrm{~kg} / \mathrm{m}^{3}$. Ash in exhaust gas is 20% of fuel ash. The ash composition is presented in table 2. The temperature of exhaust gas (before cyclone) is
............Assume ash removal efficiency $\eta_{n}=0,7$. Exhaust gas flows into cyclone via tangential inlet.

Project 1 - Cyclone

Tab. 1 Fine coal characteristic

Fine coal compos ition	Contribution $[\%]$
c	58,64
h	3,21
n	0,84
o	1,16
s	0,73
cl	0,25
p	25,52
w	9,65

Project 1 - Cyclone

Tab. 2 Ash characteristic

Ash grain size, $\mu \mathrm{m}$	Contribution of fraction, [\%]
$0-10$	15
$10-20$	10
$20-60$	35
>60	40

Cyclone

Molar fuel composition, kmol/kg

Minimal oxygen requirement $\mathrm{n}_{\mathrm{o} \text {,min }}$, $\mathrm{kmol} / \mathrm{kg}$
Minimal air requirement $\mathrm{n}_{\mathrm{a}, \min }$, $\mathrm{kmol} / \mathrm{kg}$
Real air requirement $\mathrm{n}_{\mathrm{a}}, \mathrm{kmol} / \mathrm{kg}$
Molar exhaust gas composition, kmol/kg
total amount of exhaust gas n", kmol/kg

Cyclone

Dry exhaust gas composition [], kmol/kmol Wet exhaust gas composition () kmol/kmol Exhaust gas stream in standard conditions, $\mathrm{m}_{\mathrm{n}}{ }^{3} / \mathrm{s}$
Exhaust gas stream $\mathrm{m}^{3} / \mathrm{s}$
Stream of dust in exhaust gas (before cyclone), $\dot{m}_{\mathrm{a} 1}$,
kg/s
Stream of dust in exhaust gas (after cyclone), $\dot{m}_{\mathrm{a} 2}, \mathrm{~kg} / \mathrm{s}$
Dust emission (before cyclone), $\mathrm{E}_{\mathrm{a} 1}, \mathrm{~g} / \mathrm{m}^{3}$
Dust emission (after cyclone), $\mathrm{E}_{\mathrm{a} 2}$, $\mathrm{g} / \mathrm{m}^{3}$

Cyclone

Dynamic viscosity η, μ [Pas], [$\left.\mathrm{Ns} / \mathrm{m}^{2}\right],[\mathrm{kg} / \mathrm{sm}]$
Exhaust gas density $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$
Kinematic viscosity $v\left[\mathrm{~m}^{2} / \mathrm{s}\right]$

$$
v=\frac{\eta}{\rho}
$$

Cyclone

Dynamic viscosity η, μ [Pas], [$\mathrm{Ns} / \mathrm{m}^{2}$], $[\mathrm{kg} / \mathrm{sm}]$

$$
\eta_{m}=\frac{\sum_{i=1}^{n} z_{i} \cdot \eta_{i} \cdot \sqrt{M_{i} \cdot T_{k i}}}{\sum_{i=1}^{n} z_{i} \cdot \sqrt{M_{i} \cdot T_{k i}}}
$$

Formula Sutherlanda:

$$
\eta=\eta_{o} \cdot\left(\frac{273+C}{T+C}\right) \cdot\left(\frac{T}{273}\right)^{3 / 2}
$$

Cyclone

Dynamic viscosity η, μ [Pas], [$\left.\mathrm{Ns} / \mathrm{m}^{2}\right],[\mathrm{kg} / \mathrm{sm}]$

Tab. 3. Gas charakteristic

i	$\sqrt{M_{i} \cdot T_{k i}}$	$\eta_{\mathrm{o}} \cdot 10^{6}$ $[\mathrm{Pas}]$	$\mathrm{C}_{\mathrm{m}}[\mathrm{K}]$
$\mathrm{H}_{2} \mathrm{O}$	108,0	8,17	650
CO_{2}	115,5	13,84	274
$\mathrm{~N}_{2}$	59,5	16,65	118
O_{2}	70,2	19,42	138

$$
\begin{aligned}
& \eta_{S O_{2}}=1,9 \cdot 10^{-5} \mathrm{~Pa} \cdot \mathrm{~s} \\
& \eta_{H C l}=2,2 \cdot 10^{-5} \mathrm{~Pa} \cdot \mathrm{~s} \\
& T_{k S O_{2}}=157,7^{\circ} \mathrm{C} \\
& T_{k H C l}=51,4^{\circ} \mathrm{C}
\end{aligned}
$$

Cyclone

Exhaust gas density $\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$

$$
p \cdot v=\frac{(M R) \cdot T}{M} \quad \text { where } \quad v=\frac{1}{\rho} \quad \rho_{s p}=\frac{p}{\frac{(M R)}{M} \cdot T_{s p}}
$$

Cyclone

Kinematic viscosity $\vee\left[\mathrm{m}^{2} / \mathrm{s}\right]$

$$
v=\frac{\eta}{\rho}
$$

Cyclone

I Input data
II Maximum limit value of diameter of ash grain (knowing composition of ash fraction and efficiency of separation in cyclone)

III Cyclone construction (framework)
IV Assumption of average inlet gas velocity and calculation (extrapolation) of $r_{\text {cmax }}$ value. Acceptance of radius of cyclone r_{c}.
Condition: $\mathrm{r}_{\mathrm{c}}<\mathrm{r}_{\text {cmax }}, \dot{V}_{e g}=A_{w} \cdot \bar{v}_{i}, \dot{V}_{e g} \leq 2,5 \frac{m^{3}}{s} \quad \mathrm{~d}_{\mathrm{a}}{ }^{*} \leq \mathrm{d}_{\mathrm{amax}}{ }^{*}, \eta \geq \eta_{\mathrm{n}}$
V Calculation of flow resistances and loss of pressure $\Delta \mathrm{p}$, Condition: $\Delta \mathrm{p} \leq \Delta \mathrm{p}_{\text {perm }}$

Cyclone

Tab. 4. The average diameter of ash grain for each fraction

Ash grain diameter, $\mu \mathrm{m}$	Contribution of fraction, \%	Average diameter of ash grain for each fraction, $\mathrm{d}_{\mathrm{ai}}, \mu \mathrm{m}$
$0-10$	15	
$10-20$	10	
$20-60$	35	
$60-100$	40	

Cyclone

The average diameter of ash grain

$$
d_{a}=\frac{\sum_{i=1}^{n} g_{i} \cdot d_{a i}}{\sum_{i=1}^{n} g_{i}}
$$

Cyclone efficiency as a function of ash grain diameter ratio

Find d_{a}^{*}
for given efficiency

Cyclone
 construction parameters

$$
\begin{aligned}
& r_{c}=0,1-0,5 \mathrm{~m} \\
& \frac{r_{o}}{r_{c}}=0,35-0,8 \\
& \frac{h_{i}}{r_{o}}=4,6-16,4 \\
& \frac{A_{o}}{A_{c}}=0,123-0,639 \\
& \frac{A_{w}}{A_{c}}=0,135-0,230
\end{aligned}
$$

Cyclone construction parameters

$$
\begin{array}{ll}
a<c & \frac{a}{2 r_{c}}=0,45-0,6 \\
b<\left(r_{c}-r_{o}\right) & \frac{b}{2 r_{c}}=0,2-0,3 \\
H=c+h_{s} & \frac{a}{b}=2-2,5 \\
h_{s}=4,6 \cdot r_{o} \cdot\left(\frac{4 r_{c}}{a \cdot b}\right)^{1 / 3} & \frac{h_{s}}{2 r_{c}}=3,5-4,5
\end{array}
$$

Cyclone construction parameters

$$
\begin{aligned}
& \frac{r_{o}}{r_{c}}=0,4-0,6 \\
& \frac{h_{c}}{2 r_{c}}=1,5-2,2 \\
& \frac{d_{s}}{2 r_{c}}=0,3-0,4
\end{aligned}
$$

On the assumption that:

- Average inlet gas velocity: $\bar{v}_{i}=8-15 \mathrm{~m} / \mathrm{s}$

Calculate

Maximum radius of cyclone cylindric part $r_{\text {cmax }}$

Smuchin, Kouzow Formula

$$
d_{a}^{*}=\left(\frac{9 \cdot \eta_{g}}{\pi \cdot n \cdot \omega \cdot \rho_{a}} \cdot \ln \frac{r_{c}}{r_{o}}\right)^{1 / 2}
$$

where

$$
n=\frac{\bar{v}_{i}}{(1,6 \div 1,7) \cdot\left(r_{c}+r_{o}\right) \cdot \pi}
$$

Number of gas stream circulation in cyclone

$$
\omega=\frac{2 \bar{v}_{s}}{r_{c}+r_{o}}
$$

Angular velocity of gas stream

$$
\bar{v}_{s}=\frac{\bar{v}_{i}}{(1,6 \div 1,7)}
$$

Average value of tangent component of gas stream velocity

Fuchs Formula

$$
d_{a}^{*}=\left(\frac{18 \cdot \eta_{g} \cdot a}{\pi \cdot n_{o} \cdot \rho_{a} \cdot \bar{v}_{i}}\right)^{1 / 2}
$$

where

$$
n_{o}=2 \div 4
$$

Number of gas stream circulation in cyclone

Lapple Formula

$$
d_{a}^{*}=\left(\frac{9 \cdot \eta_{g} \cdot a \cdot b^{2}}{\dot{V}_{g} \cdot \rho_{a} \cdot \theta}\right)^{1 / 2}
$$

where

$$
\begin{aligned}
& \theta=\frac{\pi}{a} \cdot\left[2 h_{c}+\left(H-h_{c}\right)\right] \\
& \text { or }
\end{aligned}
$$

Number of gas stream circulation in cyclone

$$
\theta=12 \cdot \pi
$$

$$
\theta=2 \cdot \pi(0,5 \div 10)
$$

Stream continuity condition

$$
\dot{V}_{e g}=A_{w} \cdot \bar{v}_{i}
$$

Flow continuity condition

$$
\begin{gathered}
\rho_{1} v_{1} A_{1}=\rho_{2} v_{2} A \\
\dot{V}_{e g}=A_{w} \cdot \bar{v}_{i}
\end{gathered}
$$

Loss of pressure

$$
\Delta p=\xi \frac{v_{i}^{2}}{2} \rho_{g}
$$

ξ - pressure loss coefficient of cyclone

$$
\xi=\xi_{i}+\xi_{o}
$$

ξ_{i} - pressure loss coefficient of inlet part of cyclone
ξ_{0} - pressure loss coefficient of outlet part of cyclone

Pressure loss coefficiens

$$
\xi_{i}=\frac{r_{o}}{r_{c}}\left(\frac{v_{s o}}{\bar{v}_{o}}\right)^{2}\left[\frac{1}{\left(1-\frac{v_{s o}}{\bar{v}_{o}} \frac{h_{s}}{r_{o}} \lambda\right)^{2}}-1\right]
$$

$$
\left(\frac{v_{s p}}{\bar{v}_{o}}\right)>1 \quad \xi_{o}=K\left(\frac{v_{s o}}{\bar{v}_{o}}\right)^{4 / 3}+\left(\frac{v_{s o}}{\bar{v}_{o}}\right)^{2}
$$

Where

$$
\left(\frac{v_{s o}}{\bar{v}_{o}}\right)<1 \quad \xi_{o}=K_{o}\left(1-\frac{v_{s o}}{\bar{v}_{o}}\right)+K\left(\frac{v_{s o}}{\bar{v}_{o}}\right)^{4 / 3}+\left(\frac{v_{s o}}{\bar{v}_{o}}\right)^{2} \approx 2\left(\frac{v_{s o}}{\bar{v}_{o}}\right)^{2}
$$

Pressure loss coefficiens

Coefficient of friction: $\quad \lambda=\lambda_{g}\left(1+C \sqrt{S_{m}}\right)$
Where
λ_{g} - friction coeffictient for gas without dust, assume $\lambda_{g}=0,005$
$S_{m}=\frac{\dot{m}_{p 1}}{\rho_{e g} \dot{V}_{e g}},\left[\frac{k g_{a s h}}{k g_{e g}}\right]$
$\begin{array}{lll}\mathrm{C}=2 & \text { where } & \mathrm{S}_{\mathrm{m}}<1 \\ \mathrm{C}=3 & \text { where } & \mathrm{S}_{\mathrm{m}}>1\end{array}$

Pressure loss coefficiens

$$
\frac{v_{s o}}{\bar{v}_{o}}=\frac{1}{\frac{A_{w}}{A_{o}} \frac{r_{o}}{s} \alpha+\frac{h_{i}}{r_{o}} \lambda}
$$

where

$$
s=r_{c}-\frac{1}{2} b
$$

Pressure loss coefficiens

$$
\begin{gathered}
\alpha=1-\left(0,54-0,153 \frac{A_{o}}{A_{w}}\right)\left(\frac{b}{r_{c}}\right) \\
\text { or from figure below }
\end{gathered}
$$

Pressure loss coefficiens

$\mathrm{K}, \mathrm{K}_{\mathrm{o}}$ - coefficients depend on edge of outlet pipe
$\mathrm{K}=4,4$ for sharp edge of outlet pipe
$\mathrm{K}=3,4$ for blunt edge of outlet pipe
$\mathrm{K}_{0}=2,0$ for sharp edge of outlet pipe
$K_{0}=1,1$ for blunt edge of outlet pipe

Loss of pressure

$$
\Delta \mathrm{p} \leq \Delta \mathrm{p}_{\text {perm }}
$$

where
$\Delta \mathrm{p}_{\text {perm }}=0,8-1,2 \mathrm{kPa}(2,5 \mathrm{kPa})$

