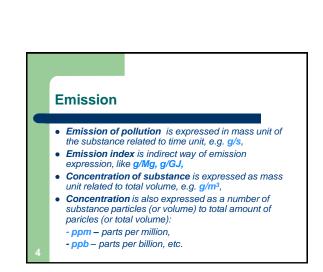
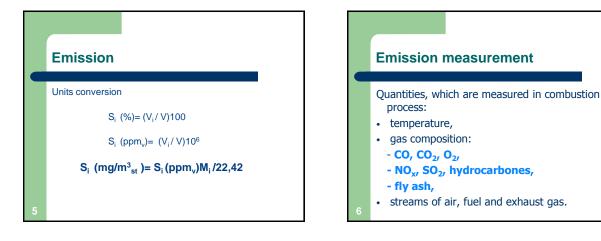


Emission

• Emission - direct or indirect introduction to air, water

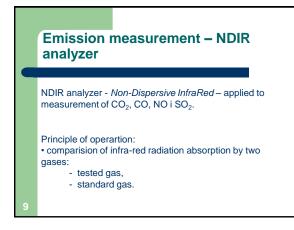

(of frequency 16 Hz to 16 kHz), vibration or

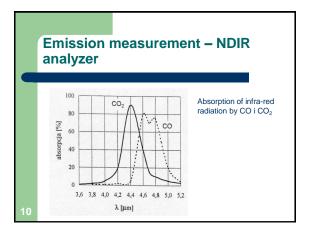

environment, is called pollution.

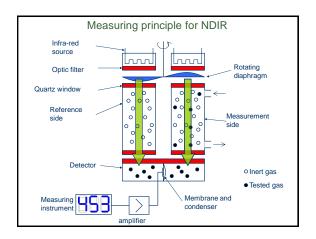
or soil of substance or energy in form of heat, noise

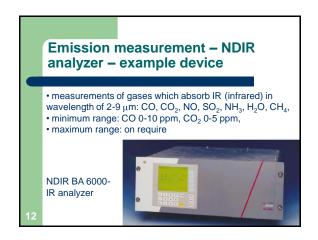
electromagnetic field in the result of human activity.

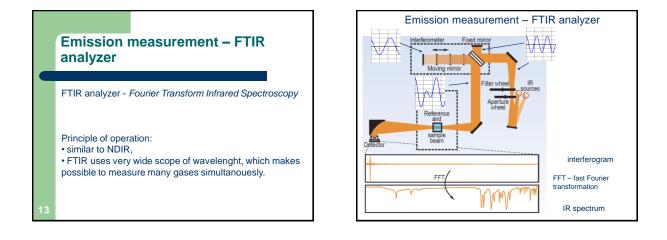
• Emission, which may be harmful for human being or

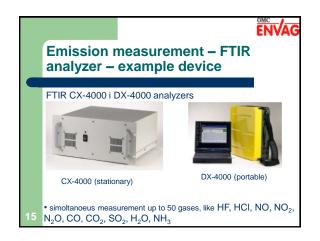


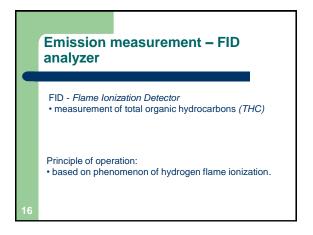


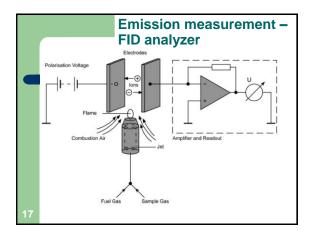

Emission measurement – gas analyzers

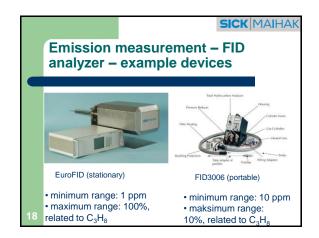

- NDIR analyzer measurement of CO, CO₂, NO, SO₂,
- FTIR analyzer measurement of any substance,
- FID analyzer measurement of sum of hydrocarbons,
- CLD analyzer measurement of NO_x,
- electrochemical analyzer measurement of O₂, CO, CO₂
- · chromatography measurement of any substance,
- dust analyzer: gravimetric analyzer, optical analyzer

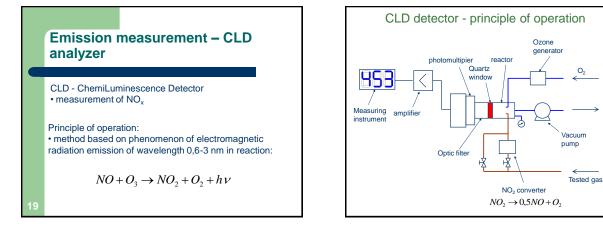

Emission measurement – gas conditioning 9. es sampling – probe, 9. erfiltration – dust removal (above 0,2 μm), 9. es transport – heated line, Work of the standard standard

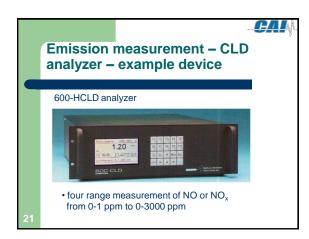


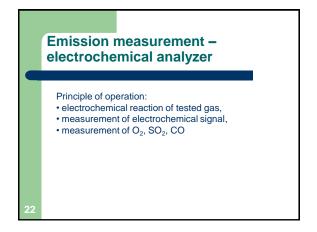


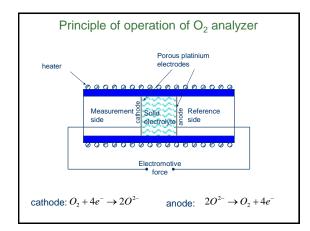


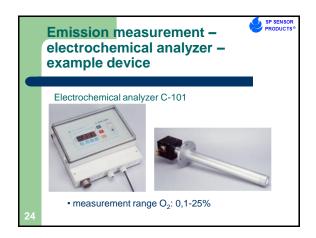


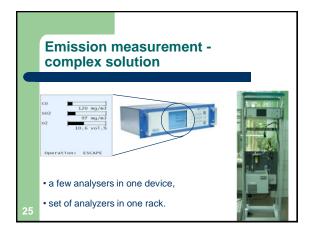


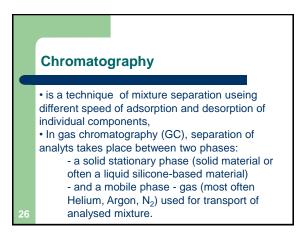


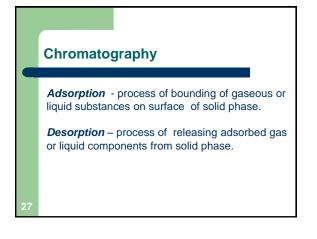


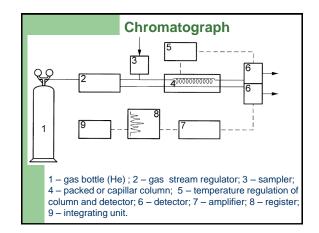


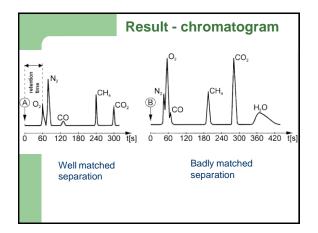


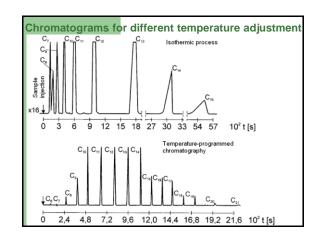


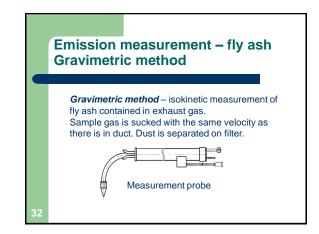


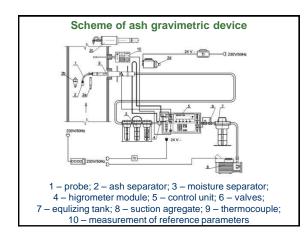


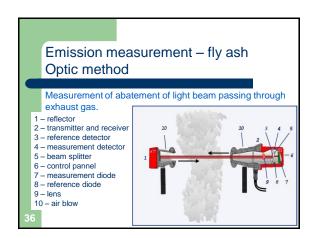




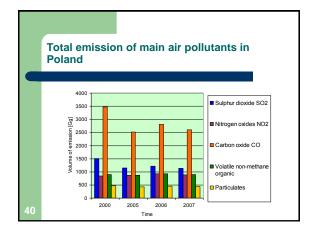


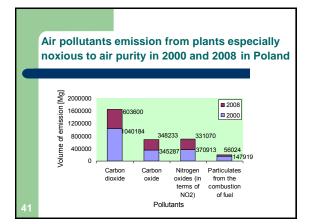


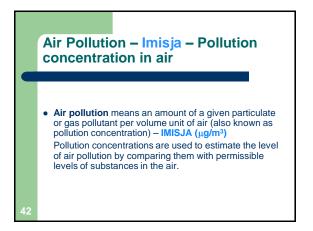


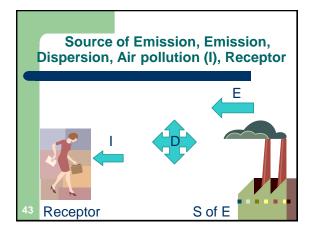


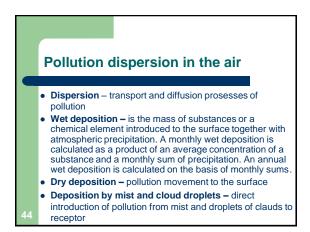


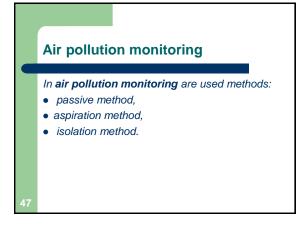









Total emission of Poland, in gigagr			ants in	_
Specification	2000	2005	2006	2007
Sulphur dioxide SO ₂		1145	1222	1131
Nitrogen oxides NO ₂		875	921	885
Carbon dioxide CO ₂	320588	318216	329599	328172
Carbon oxide CO	3472	2521	2804	2603
Volatile non- methane organic	904	867	929	898
Ammonia NH ₃	322	271	287	292
Particulates	464	430	458	436



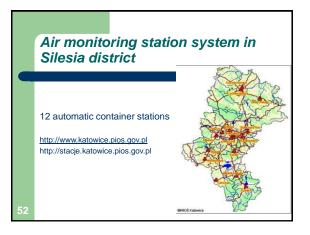
Air pollution

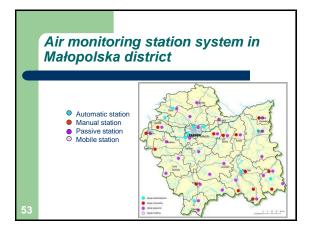
- Admissible air pollution standards were established by the virtue of the Ordinance of the Minister of Environment.
- Comparison of measured air pollution concentrations to admissible air pollution standards is used to control of air pollution degree.

Pollution standarts Dz.U. nr 16, poz. 87, 2010 rok; Pollution standards cover 167 substances. The substances are determined in w µg/m³ of air by areas: spa areas, other areas and by 1 hour concentrations, and annual average (calendar year) concentrations.

<section-header><list-item><list-item><list-item><list-item>

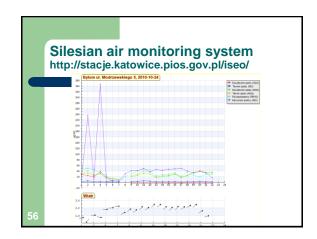
Air pollution monitoring

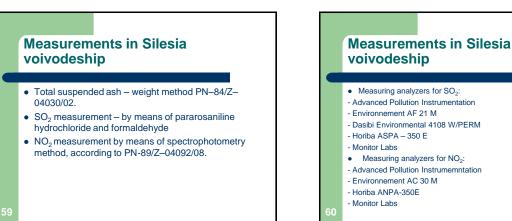

 In aspiration method well known air quantity is intaken and passed through liquid or solid sorbent. It is used in case of low concentration of pollution.


Air pollution monitoring

 In isolation method defined air quantity is taken into container and next analysed. It is used in case of high concentration of pollution.

Air pollution measurement


- National and regional (local) air monitoring system
- Analysed substances: fly ash, SO₂, NO₂, CO, O₃, CH₄, aliphatic hydrocarbons (calculated as CH₄), aromatic hydrocarbons (total).



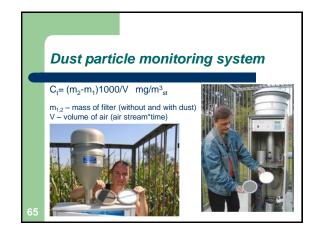
	esiar ://sta																								
	Parat	Dane aktualne V Potez Stacja Ginice at Meny 34													P	okaž]								
Strona główna	Gliwice ul. Mewy 34, 2010-10-24 Parametr Jelaosita Norma Godzina															A									
Dane aktualne	Dwutlenek		_	1	2	3	4	5	6	7	8	9	10	-	-	13	14	15	16	17	18	19	20	21 :	ł
Raport dzienny	siarki (SO ₂) Tlenek azotu	h8,m3	350	13	17	20	25	19	14	16	15	21		13	10	8	8	8	7	6	6	7	6	6	
	(NO)	µg'm ³		2	2	1	2	1	1	0	1	6		1	1	0	0	0	0	1	1	0	1	1	
Raport miesięczny	Dwutlenek azotu (NO ₃)	$\mu g'm^3$	200	36	34	33	35	20	18	16	15	39		15	10	10	11	11	11	13	14	14	13	14	
Raport roczny	Tlenki azotu (NO _x)	$\mu g {}^i m^3$		39	36	35	38	21	19	16	16	48		17	11	11	12	12	12	14	15	15	14	15	
0 stacjach	Pył zawieszony (PM ₁₀)	µg'm ³		55	51	56	68	54	50	40	36	58	49	40	32	31	30	27	26	24	31	34	28	31	
	Deadlenia																							2	

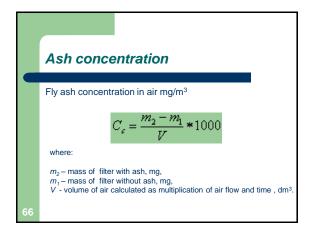
													yster pl/isec							
			-			Ra	p	ort	m			ecz	zny							
	Parametr	lenek siarki (Paździe		0 - (Poka	2	•	1		St	acja	C	Paździemik 201	0 🗸	rgo 2 Pol	(aż	Ŷ			
Strona główna		C	zęsto	cho	wa	ul.	Ba	czyı	ńsk	ieg	o 2	, P	až Wrzesień 2010 Sierpień 2010 Lipiec 2010 Czerwiec 2010)					^
Dane aktualne	Stacja	Jednostka	Norma		,	,							Maj 2010 Kwiecień 2010 Marzec 2010		ień 16	14	17	10	19	ľ
Raport dzienny	Dwutlenek siarki (SO ₂)	µgʻm ³	125	9	7	6	6	6	7	8	10	11	Luty 2010 Styczeń 2010 Grudzień 2009		17	15		-	27	
Raport dzienny	Tlenek azotu (NO)	µgim ³		7	3	1	2	2	2	2	2	2	Listopad 2009 3. Październik 200 Wrzesień 2009	,	27	7	2	5	20	1
Raport miesięczny	Dwutlenek azotu (NO3)	µgʻm ³		13	9	7	7	7	8	11	14	17	Sierpied 2009 Lipiec 2009 Czerwiec 2009		23	20	14	23	30	2
Raport roczny	Tlenek wegla (CO)	mgʻm ³		0.25	0.22	0.18	0.17	0.16	0.16	0.18	0.20	0.28	0.8 Kwiecień 2009		0.5	0.38	0.18	0.3 (0.63	0.
	Ozon (O3)	µgʻm ³		11	30	36	44	48	43	42	42	54	Marzec 2009 41 Luty 2009 Styczeń 2009		28	25	42			
0 stacjach	Tlenki azotu (NO ₂)	µgʻm ³		23	14	9	10	10	11	13	17	21	SI Grudzień 2008 Listopad 2008		64	30	16	30	61	5 ~

		in kat	owio	~ •	.	~				/S						
nup	://stac	je.kai	Owic	e.	JIC	12	.y	00	.p	1/1	se	0/				
SCA		-		R	ap	ort	ro	czr	ŋу	and a	03255					
P.C.	Parametr Dwutlenek		ka2	-	2010	8		ecja brze ul	Skled	lawski	ej 34			v 20	010 🛩	Pokad
			Zabrz	e ul.	Skl	odo	wsk	ciej :	34 -	201	0					
Strona główna	Parametr	Jednostka	Norma	1					Mie	siąc						Średni (l)
Dane aktualne	1			I.	п	ш	IV	v	VI	VII	VIII	IX	x	XI	XII	
Dalle aktionie	Dwutlenek siarki (SO ₂)	µg'm ³	20	57	45	20	13	8	8	11	12	9				
Raport dzienny	Tienek azotu (NO)	$\mu g^i m^3$		15				3	3	3	5	12				
Raport miesieczny	Dwutlenek azotu (NO ₃)	$\mu g'm^3$	40	38				17	17	19	22	24				
Raport miesięczny																
Raport miesięczny	Tienek wegla (CO)	mg/m ³			0.98	0.84	0.65	0.46	0.46	0.57	0.45	0.71				

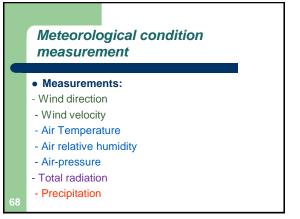
Measurements in Silesia voivodeship

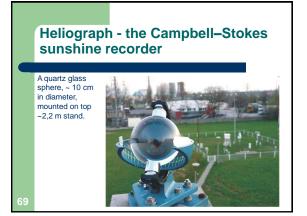
- Measuring analyzers for suspended ash of particles below10 μm :
- Horiba FH 62 I-N-ADPA 351 E
- Rupprecht and Patashnick TEOM PM10
- AMIZ
- Measuring analyzers for CO:
- Horiba APMA -350 E
- Monitor Labs
- Measuring analyzers for O₃:
- Advanced Pollution Instrumentation API 400
- Horiba APOA 350 E
- Monitor Labs

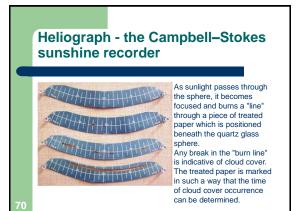

Air Monitoring System in the US There are 3 types of ambient monitoring networks in Nevada: SLAMS: State or Local Air **Monitoring Stations** • SPMS: Special Purpose Monitor Stations

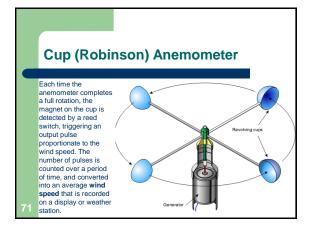

 NAMS: National Air Monitoring Stations

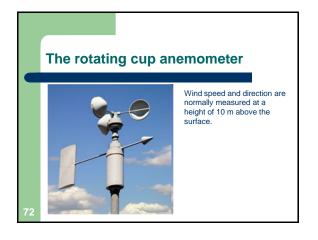
Air monitoring station system in Gliwice (Sikornik, Mewy 34) Measured Parameters: •SO2 •NO₂ •NO •NO. •PM10 •Meteorological Parameters: - Wind direction - Wind velocity - Air Temperature - Air relative humidity Total radiation - Air-pressure - Precipitation

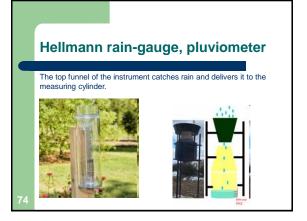







Mobile trailer for ambient gas monitoring





Precipitation measurement

• Atmospheric precipitation samples collected in accordance with a Polish Standard on atmospheric precipitation examination PN-91/C-04642.02. These are 24 h samples, so-called precipitation samples, the sampling of which starts at 6.00 GMT and lasts for 24 h. The samples are collected into sterile PE container, with an inlet are at the height of 1.5 m above the ground. Collected samples are analysed in the laboratories with various analytical methods. The value of concentration for a particular period is calculated as a weighted average, where the weight is a 24 h sum of precipitation.

	Questions for exam
	1. What is the difference between emission and air pollution?
	2. Convert 450 ppm NO ₂ to mg/m ³ _{st}
	3. Why emission and air pollution are measured?
	4. What composition of air pollution is meassured in monitoring stations?
	5. What is the principle of NDIR and FTIR analyzer?
	6. What is the principle of FID analyzer?
	7. What is measure in meteorological stations?
	8. What Helilograf and Anemometer is used for?
	9. Methods of fly ash measurements.
	10. Kind of pollution deposition.
76	