







## Dispersion of substance depends on:

· emission,

• emission source parameters: height, outlet diameter, as well as velocity of exhaust gas and its temperature,

- climate conditions wind, temperature, precipitation (rain, snow, hail),
- terrain roughness.

Regulation act (Dz. U. nr 16, poz. 87 z 2010 roku) contains:

- reference values for some substances in ambient air (incl. numerical designation and average period)
   – appendix 1 and 2,
- conditions in which reference values are expressed, i.e.: 293 K; 101,3 kPa,
- reference methods of modeling the value of substance in the ambient air – appendix 3.

|                  | Regulation act contair<br>period of: o<br>o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns reference values, average in<br>ne hour – $D_1$ ,<br>ne year– $D_a$ , |                                                                                            |                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                                                            |                                  |
| ubsta            | Ince number to CA<br>in act Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ber accordin<br>AS – Chemic<br>tract Service<br>istry Numbe              | g Average<br>al value fo<br>r and o                                                        | reference<br>one hour<br>ne year |
| Lp/              | Nazwa substancji <sup>1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Oznaczenie<br>numeryczne<br>substancji                                   | Wartości odniesienia w mikrogramach na<br>metr sześcienny (µg/m³) uśrednione dla<br>okresu |                                  |
| 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (numer<br>CAS) <sup>21</sup>                                             | jednej godziny                                                                             | roku<br>kalendarzowego           |
| 1                | Acetaldehyd (aldehyd octowy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75-07-0                                                                  | 20                                                                                         | 2,5                              |
| 2                | Aceton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67-64-1                                                                  | 350                                                                                        | 30                               |
| 0                | Acetonitryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75-05-8                                                                  | 20                                                                                         | 2,5                              |
| 3                | and the second s | 107 03 9                                                                 | 10                                                                                         | 0.9                              |
| 4                | Akrylaldehyd (akroleina)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 107-02-0                                                               | 10                                                                                         | 010                              |
| 3<br>4<br>5      | Akrylaldehyd (akroleina)<br>Akrylonitryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 107-13-1                                                                 | 5                                                                                          | 0,5                              |
| 3<br>4<br>5<br>6 | Akrylaidehyd (akroleina)<br>Akrylonitryl<br>Alkohol furfurylowy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107-13-1<br>98-00-0                                                      | 5<br>100                                                                                   | 0,5                              |







| Atmosphere equilibrium state  |                            |                                                                                 |  |  |  |  |
|-------------------------------|----------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| Air cooling rate along height |                            |                                                                                 |  |  |  |  |
| Air                           | Cooling rate, °C/100m      | Thermal gradient                                                                |  |  |  |  |
| Dry (not saturated)           | 1                          | Dry-adiabatic                                                                   |  |  |  |  |
| Wet (saturated)               | 0,5                        | Wet-adiabatic                                                                   |  |  |  |  |
| Atmosphere equilibriu         | m state as a function of p | resent thermal gradient<br>Thermal gradient<br>°C/100 m<br>Unstable equilibrium |  |  |  |  |





























| Meteorological situation is described by atmosphere equilibrium state and wind velocity. Regulation act defines 36 meteorological situations. |                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
|                                                                                                                                               |                    |  |  |  |
| Atmosphere equilibrium state                                                                                                                  | (at altitude 14 m) |  |  |  |
| 1 – extremly unstable                                                                                                                         | 1 – 3              |  |  |  |
| 2 – unstable                                                                                                                                  | 1 – 5              |  |  |  |
| 3 – lightly unstable                                                                                                                          | 1 – 8              |  |  |  |
| 4 – neutral                                                                                                                                   | 1 – 11             |  |  |  |
| 5 - moderately stable                                                                                                                         | 1 – 5              |  |  |  |
| 6 – stable                                                                                                                                    | 1 – 4              |  |  |  |
| Wind velocity is defined with precision to 1 m/s                                                                                              |                    |  |  |  |







| <b>Terrain roughness factor</b> – describes aerodynamic roughness of terrain by means of number coefficient $z_0$ . |                                    |                       |                                |                                      |                       |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|--------------------------------|--------------------------------------|-----------------------|--|--|--|--|
| No.                                                                                                                 | Type of terrain                    | Factor z <sub>0</sub> | No.                            | Type of terrain                      | Factor z <sub>0</sub> |  |  |  |  |
| 1                                                                                                                   | water (lakes, etc.) 0,00008        |                       | 0                              | City between 100 000 to 500 000      |                       |  |  |  |  |
| 2                                                                                                                   | meadows, grass-lands               | 0,02                  | 9                              | inhabitants                          |                       |  |  |  |  |
| 3                                                                                                                   | fields                             | 0,035                 | 9.1                            | <ul> <li>low buildings</li> </ul>    | 0,5                   |  |  |  |  |
| 4                                                                                                                   | orchards, thickets, copses         | 0,4                   | 9.2                            | <ul> <li>medium buildings</li> </ul> | 2,0                   |  |  |  |  |
| 5                                                                                                                   | forests                            | 2,0                   | 9.3                            | <ul> <li>high buildings</li> </ul>   | 3,0                   |  |  |  |  |
| 6                                                                                                                   | Dense rural buildings              | 0,5                   | 10                             | City above 500 000 inhabitants       |                       |  |  |  |  |
| 7                                                                                                                   | Towns up to 10000                  | 1,0                   | 10.1                           | - low buildings                      | 0,5                   |  |  |  |  |
|                                                                                                                     | City, between 10,000 to 100,000    |                       | 10.2                           | <ul> <li>medium buildings</li> </ul> | 2,0                   |  |  |  |  |
| 8                                                                                                                   | inhabitants                        |                       | 10.3                           | - high buildings                     | 5,0                   |  |  |  |  |
| 8.1                                                                                                                 | <ul> <li>low buildings</li> </ul>  | 0,5                   |                                | 1 -                                  |                       |  |  |  |  |
| 8.2                                                                                                                 | <ul> <li>high buildings</li> </ul> | 2,0                   | $z_0 = -\sum A_i \cdot z_{0i}$ |                                      |                       |  |  |  |  |
|                                                                                                                     |                                    |                       |                                | $A = \frac{1}{i}$                    |                       |  |  |  |  |



**Basic terms** 

The highest maximal concentration  $S_{mm}$  – the highest value among all 36 values of maximal concentration  $S_m$  for particular substance.

**Distance**  $x_m$  – distance between emission point and point of the highest maximal concentration  $S_{mm}$ .





4) lead emission does not exceed 0,05% of calculated

ash emission.













## Exam questions

- 1. Define reference value.
- Define substance background.
   What is denoted by D<sub>1</sub> and D<sub>a</sub>?
- What is denoted by D<sub>1</sub> and D<sub>a</sub>?
   What is the relationship between thermal vertical gradient and
- atmosphere equilibrium state? 5. Describe inversion phenomenon.
- 6 Draw thermal vertical gradient for A-izothermic equilibrium atmosphere state , B- stable equilibrium atmosphere state Cunstable equilibrium atmosphere state D- equilibrium atmosphere state with inversion layer E- neutral equilibrium atmosphere state?
- What does mean S<sub>m</sub>, S<sub>mm</sub> ?
   Calculation showed that S<sub>mm</sub> > 0.1D<sub>1</sub> what conditions should be fulfilled in order to obtain possitive result of reference value calculation?